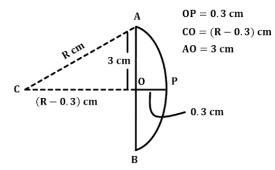
JEE-Main-17-03-2021-Shift-1 (Memory Based) PHYSICS


Question: Diameter of plano-convex lens is 6 cm and thickness at the centre is 3 mm. If speed of light in material of lens is 2×10^8 m/s, the focal length of the lens is:

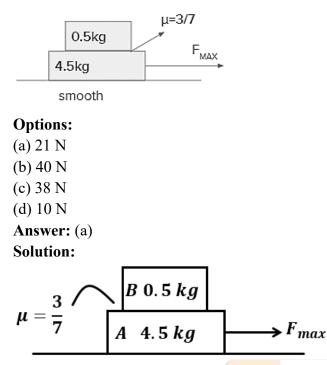
Options:

- (a) 20 cm
- (b) 30 cm
- (c) 10 cm
- (d) 15 cm

Answer: (b)

Solution:

From diagram:


$$R^{2} - (R - 0.3)^{2} = 9$$
$$\Rightarrow R^{2} - R^{2} \left(1 - \frac{3}{10R}\right)^{2} = 9$$

Apply Result of binomial expression:

$$\Rightarrow R^{2} - R^{2} \left(1 - \frac{6}{10R}\right) = 9$$

$$\Rightarrow R = +15 \, cm$$

and $\mu_{g} = \frac{3 \times 10^{8}}{2 \times 10^{8}} = \frac{3}{2} = \mu_{2}$
Fold length $\frac{1}{f} = \left(\frac{\mu_{2}}{\mu_{1}} - 1\right) \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right)$

$$\Rightarrow \frac{1}{f} = \left(\frac{3}{2} - 1\right) \left(\frac{1}{\infty} - \frac{1}{(-15)}\right) = \frac{1}{30}$$

f = 30 cm

Question: F_{max} such that both blocks more together.

Maximum friction between block A & B:

$$f_{\text{max}} = \mu m_B g$$
$$= \frac{3}{7} \times \frac{5}{10} \times \frac{98}{10}$$
$$f_{\text{max}} = \frac{21}{10} N$$

Maximum acceleration for block B (as only friction will give acceleration to block B): -

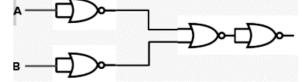
$$a_{\max} = \frac{21}{10} \times \frac{10}{5} = \frac{21}{5} m / s^2$$

So, for blocks A and B to move together, both must move at maximum acceleration:

$$a_{\max} = \frac{21}{5} m / s^2$$

 $F_{\max} = (m_A + m_B) a_{\max} = 5 \times \frac{21}{5} = 21 N$

Question: In a metal conductor, 0.1 A current is flowing. The cross-section area is 5 mm². Drift velocity is given to be $2 \times 10^{-3} m / s$. Find free electron density.

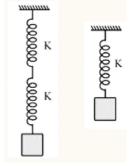

Options:

(a) 625×10²³

- (b) 62.5×10^{23}
- (c) 500×10^{23}

(d) 400×10^{23} **Answer:** (a) **Solution:** $I = n.e. A.v_d$ $\Rightarrow (0.1) = (n)(1.6 \times 10^{-19})(5 \times 10^{-6})(2 \times 10^{-3})$ $\Rightarrow n = \frac{10000}{16} \times 10^{23}$ $n = 625 \times 10^{23} m^{-3}$

Question: Given diagram is equivalent to:



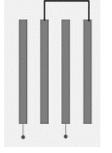
Options:

(a) OR gate (b) AND gate (c) NAND gate (d) NOR gate Answer: (c) Solution: Output of given diagram $Y = \overline{\overline{A} + \overline{B}} = \overline{A + B} = \overline{A \cdot B}$

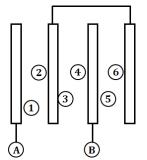
So, given combination is equivalent to NAND gate

Question: Given ratio of time period $\frac{T_1}{T_2}$ for the two systems shown here, is \sqrt{x} . Find x.

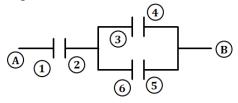
Answer: 2.00 Solution:


$$T = 2\pi \sqrt{\frac{m}{k}}$$

For spring block system


Case I: $K_{eq} = \frac{K}{2}$ (Series combination of springs) $T_1 = 2\pi \sqrt{\frac{m}{(K/2)}}$ **Case II:** $T_2 = 2\pi \sqrt{\frac{m}{K}}$ $\Rightarrow \frac{T_1}{T_2} = \frac{2\pi \sqrt{\frac{2m}{K}}}{2\pi \sqrt{\frac{m}{K}}} = \sqrt{2}$

So, x = 2


Question: For each plate $l = 2 \text{ cm } \& b = \frac{3}{2} cm$. If equivalent capacitance is $\frac{x \in_0}{d}$, where d is the distance between any two consecutive plates. Then find x.

Answer: 2.00 Solution:

Equivalent Circuit:

$$\Rightarrow C_{AB} = \frac{(2C) \times (C)}{(2C+C)} = \frac{2}{3}C$$
$$\Rightarrow C_{AB} = \frac{2}{3}\varepsilon_0 \frac{(2)(3/2)(10^{-4})}{d \times (10^{-2})}$$
$$\Rightarrow C_{AB} = \frac{2}{100} = \frac{\varepsilon_0}{d} = \frac{1}{50} \frac{\varepsilon_0}{d} = x \frac{\varepsilon_0}{d}$$
$$\Rightarrow x = \frac{1}{50} = 0.02 \text{ m} = 2 \text{ cm}$$
Therefore, x = 2.

(considering *l*, *b* and *d* in cm)

Question: Given $I = I_1 \sin \omega t + I_2 \cos \omega t$. The reading of ammeter is **Options:**

(a) $\sqrt{\frac{I_1^2 + I_2^2}{2}}$ (b) $\sqrt{\frac{I_1I_2}{I_1 + I_2}}$ (c) $\frac{I_1 + I_2}{2}$ (d) $\frac{|I_1 - I_2|2}{2}$

Answer: (a) Solution:

Need to find out rms value of current.

$$I = I_{1} \sin \omega t + I_{2} \cos \omega t$$

$$I = \sqrt{I_{1}^{2} + I_{2}^{2} + I_{1}I_{2} \cos(\frac{\pi}{2})}$$

$$I = \sqrt{I_{1}^{2} + I_{2}^{2}}$$

$$I_{rms} = \frac{I}{\sqrt{2}}$$

$$I_{rms} = \frac{\sqrt{I_{1}^{2} + I_{2}^{2}}}{\sqrt{2}}$$

$$= \sqrt{\frac{I_{1}^{2} + I_{2}^{2}}{2}}$$

Question: An electron (e, m) and photon have same energy E then $\lambda_e : \lambda_p$ is? **Options:**

(a)
$$\frac{1}{C}\sqrt{\frac{E}{2m}}$$

(b)
$$\frac{1}{C}\sqrt{\frac{E}{m}}$$

(c) $\frac{2}{C}\sqrt{\frac{E}{m}}$
(d) $\frac{1}{2C}\sqrt{\frac{E}{m}}$

Answer: (a) Solution: For electron

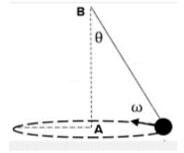
De-Broglie wavelength $\lambda_c = \frac{h}{p}$ Where p is momentum p = mvAlso by energy we have $E = \frac{1}{2}mv^2$

$$\Rightarrow E = \frac{1}{2} \frac{p^2}{m}$$
$$\Rightarrow p = \sqrt{2mE}$$
$$\therefore \lambda_c = \frac{h}{\sqrt{2mE}}$$

For photon energy $\Rightarrow E = \frac{hc}{\lambda}$

$$\Rightarrow \lambda = \frac{hc}{E}$$
$$\therefore \frac{\lambda_c}{\lambda} = \frac{h}{\sqrt{2mE}} \frac{E}{hc}$$
$$= \frac{1}{C} \sqrt{\frac{E}{2m}}$$

Question: The radius of Earth is R and escape speed is V_e. If the radius of Earth needs to be changed to nR comes 10 v. Find n? **Options:**


(a) $\frac{1}{10}$ (b) 10 (c) $\frac{1}{100}$ (d) 100 **Answer:** (c) **Solution:** $v_e \propto \frac{1}{\sqrt{r}}$

 $\frac{v_e}{10v_e} = \sqrt{\frac{nR}{R}} \Longrightarrow n = \frac{1}{100}$

Question: Consider the conical pendulum shown in figure.

 $\overrightarrow{L_A}$ = Angular Momentum about A

 $\overrightarrow{L_B}$ = Angular Momentum about B.

Options:

(a) $\overrightarrow{L_A}$ is constant in magnitude as well as direction

- (b) $\overrightarrow{L_B}$ is constant in magnitude as well as direction
- (c) $\left| \vec{L}_B \right| = \left| \vec{L}_A \right|$
- (d) $\hat{L}_B = \hat{L}_A$

Answer: (a)

Solution:

General equation: $\vec{L} = \vec{r} \times \vec{p}$

 \vec{L}_A will have the same magnitude an direction. But \vec{L}_B will change in direction. \vec{L}_A and \vec{L}_B have different magnitude.

Question: If I current flows through the long solenoid with the core of relative permeability μ_r and number of turns per unit length is n, Find the magnetic field B inside the solenoid.

Given n = 1000 turns/m; $\mu_r = 500; \mu_0 = 4\pi \times 10^{-7} \text{ Tm} / \text{ A}, I = 10 \text{ A}$

Options:

(a) 2π Tesla

(b) 3π Tesla

(c) 5π Tesla

(d) 7π Tesla

Answer: (a)

Solution:

In a long solenoid the magnetic field B is given by

 $B = \mu_r \mu_0 nI$ where n = number of turns per unit length.

I = 10 A, n = 1000, $\mu_0 = 4\pi \times 10^{-7} Tm / A$ $\mu_r = 500,$

 $B = 4\pi \times 10^{-7} \times 500 \times 1000 \times 10$ $B = 20\pi \times 10^{-1}$ $B = 2\pi \text{ Tesla}$

Question: If equivalent resistance of identical resistors in series combination is S and in parallel is combination is P. If S = n P, then find the minimum possible value of n? **Options:**

(a) 1 (b) 2 (c) 0 (d) 4

Answer: (d)

Solution:

Let there are x number of identical resistors of resistance r.

When they in series

S = xr

When they are in parallel

$$P = \frac{x}{r}$$

Given,

S = nP $xr = n \cdot \frac{r}{x}$

$$x^{2} = n$$
$$n = x^{2}$$

 $x \in \text{Integer}$

 $x \neq 1$, (No combination will possible for this)

 $x_{\min} = 2$

then

n = 4

Question: For a polyatomic ideal gas, and degree of freedom is 24. Find the ratio $\frac{C_p}{C_v}$.

Options:

(a) 1.01

(b) 1.03

(c) 1.05

(d) 1.08

Answer: (d)

Solution:

Given

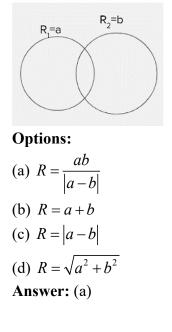
f = 24 for polyatomic ideal gas

$$\frac{C_P}{C_V} = \frac{C_V + R}{C_V} = 1 + \frac{R}{C_V}$$

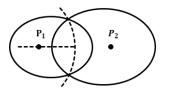
We know that

$$C_{V} = \frac{fR}{2}$$

$$\frac{C_{P}}{C_{V}} = 1 + \frac{R}{fR/2} = 1 + \frac{2}{f}$$


$$\frac{C_{P}}{C_{V}} = 1 + \frac{2}{24} = \frac{13}{12} \approx 1.08$$

Question: A CARNOT engine operating between 400 K & 800 K does 1200 J of work in 1 cycle. Find heat extracted from source.


Options:

(a) 2400 J (b) 3000 J (c) 200 J (d) 1500 J **Answer:** (a) **Solution:** $T_{\text{sink}} = 400 K$ $T_{\text{source}} = 800 K$ $\eta = \left(1 - \frac{T_{\text{sink}}}{T_{\text{source}}}\right)$ $\eta\% = 1 - \frac{1}{2} = 50\%$ $\eta = \frac{W}{Q_{in}}$ (W = 1200 J in one cycle) $\frac{1}{2} = \frac{1200}{Q_{in}}$ $Q_{in} = 2400 J$

Question: Find Radius of curvature of common surface when two soap bubble coalesce, if the surface tension is T

Solution:

P1 pressure inside bubble 1 P2 pressure inside bubble 2

$$\Delta P_{1} = \frac{4T}{a}$$

$$\Delta P_{2} = \frac{4T}{b}$$

$$P_{1} - P_{0} = \frac{4T}{a}$$

$$P_{2} - P_{0} = \frac{4T}{b}$$
At common surface
$$r_{eq}$$

$$P_{1} - P_{2} = \frac{4T}{r_{eq}}$$

$$\frac{4T}{a} - \frac{4T}{b} = \frac{4T}{r_{eq}}$$

$$\frac{1}{r_{eq}} = \frac{1}{a} - \frac{1}{b}$$

$$\frac{1}{r_{eq}} = \frac{b - a}{ab}$$

$$r_{eq} = \frac{ab}{b - a}$$
Best suited option is

$$r_{eq} = \frac{ab}{|b-a|}$$

Question: A body is rotating with 900 rpm. The angular velocity become 2460 rpm in 26 sec due to a constant angular acceleration. Total number of revolution during acceleration is. **Options:**

(a) 728 rev

(b) 364 rev

(c) 1456 rev

(d) 182 rev
Answer: (a)
Solution:

$$\omega_i = 900 rpm = \frac{900}{60} rev / s$$

 $\omega_f = 2460 rpm = \frac{2460}{60} rev / s$
 $t = 26 s$
We have
 $\omega_f = \omega_i + \alpha t$
 $\frac{2460}{60} = \frac{900}{60} + \alpha (26)$
 $\alpha \times 26 = \frac{2460 - 900}{60}$
 $\alpha = 1 rev / s^2$
 $\theta = \omega_i t + \frac{1}{2} \alpha t^2$
 $\theta = \frac{900}{60} \times 26 + \frac{1}{2} \times 1 \times (26)^2$
 $\theta = 390 + 338 = 728 rev.$

Question: Two polyatomic ideal gases are mixed together of temperature T_1 and T_2 , in a thermally insulated vessel at constant volume, if the number of molecules N_1 and N_2 , mass of particles m₁ and m₂, degree of freedom f₁ and f₂. Find final temperature of mixture ? **Options:**

(a)
$$\frac{N_{1}T_{1} + N_{2}T_{2}}{N_{1} + N_{2}}$$

(b)
$$\frac{N_{1}f_{1}T_{1} + N_{2}f_{2}T_{2}}{N_{1}f_{1} + N_{2}f_{2}}$$

(c)
$$\frac{f_{1}T_{1} + f_{2}T_{2}}{f_{1} + f_{2}}$$

(d)
$$\frac{T_{1} + T_{2}}{2}$$

Answer: (b)

Solution:

Keeping volume constant and gas is in thermally insulated vessel. The total internal energy of gas before mixing is

$$U_{i} = n_{1} \frac{f_{1}}{2} RT_{1} + \frac{n_{2} f_{2} R}{2} T_{2}$$
$$U_{i} = \frac{N_{1}}{N_{2}} \frac{f_{1}}{N_{A}} \frac{f_{1}}{2} R.T_{1} + \frac{N_{2}}{N_{A}} \frac{f_{2}}{2} .RT_{2}$$

After mixing, let the temperature be T_f

$$U_{f} = \frac{N_{1}}{N_{A}} \frac{f_{1}RT_{f}}{2} + \frac{N_{2}}{N_{A}} \frac{f_{2}}{2} RT_{f}$$

Vessel is thermally insulated
So, $U_{i} = U_{f}$
$$\frac{N_{1}f_{1}RT_{f}}{2N_{A}} + \frac{N_{2}f_{2}RT_{f}}{2N_{A}} = \frac{N_{1}f_{1}RT_{1} + N_{2}f_{2}RT_{2}}{2N_{A}}$$
$$(N_{2}f_{2} + N_{1}f_{1})T_{f} = N_{1}f_{1}T_{1} + N_{2}f_{2}T_{2}$$
$$T_{f} = \frac{N_{1}f_{1}T_{1} + N_{2}f_{2}T_{2}}{N_{1}f_{1} + N_{2}f_{2}}$$

Question: A particle accelerates from rest with a uniform acceleration of ' α ' & then decelerates to rest with a constant deceleration ' β '. Find total displacement. Given total time is T.

Options:

(a) $\frac{\alpha\beta T^2}{2(\alpha+\beta)}$		
(b) $\frac{\alpha\beta T^2}{(\alpha+\beta)}$		
(c) $\alpha T^2 + \beta T^2$		
(d) $\frac{\alpha T^2 + \beta T^2}{2}$	2	
Answer: (a)		
Solution:		
$\mathbf{u} = 0$ $\mathbf{a} = \alpha$	$\mathbf{v} = \mathbf{v}$	$a = -\beta$ $v = 0$
$ \longrightarrow $		→
Α	В	С
€	B →<	
$\begin{array}{c} A \\ \bigstar \\ S_1 \\ t_1 \end{array}$	B →<	c s_2 t_2
< <u>S₁</u>	``	S ₂ →
< S ₁ t ₁	``	s_2 t_2 \dots (i)
	$= T - t_1$	s_2 t_2 \dots (i)
	$= T - t_1$ $O = v - \beta$	s_2 t_2 \dots (i)

Solving equation (i) and (ii)

$$t_1 = \frac{\beta}{\alpha + \beta} . T$$

$$t_2 = \frac{\alpha}{\alpha + \beta} . T$$

Total displacement 's' = $s_1 + s_2$

$$s = \frac{1}{2}\alpha t_1^2 + \frac{1}{2}\beta t_2^2$$

$$s = \frac{1}{2} \left\{ \alpha \cdot \left(\frac{\beta}{\alpha + \beta}T\right)^2 + \beta \cdot \left(\frac{\alpha}{\alpha + \beta} \cdot T\right)^2 \right\}$$

$$s = \frac{1}{2} \cdot \frac{\alpha\beta}{(\alpha + \beta)}T^2$$

Question: Two identical metallic wires are connected one after other. Find their k_{eq} ?

Options:

(a)
$$k_1 + k_2$$

(b) $\frac{k_1 k_2}{k_1 + k_2}$
(c) $\frac{k_1 + k_2}{2}$
(d) $\frac{2k_1 k_2}{k_1 + k_2}$

Answer: (d) Solution:

$$A \begin{array}{c|c} L & L \\ \hline k_1 & k_2 \\ \hline R_1 = \frac{L}{k_1 A} & R_2 = \frac{L}{k_2 A} \end{array} \qquad A \begin{array}{c} 2L \\ \hline k_{eq} \\ \hline R_{eq} = \frac{2L}{k_{eq} A} \end{array}$$

$$\begin{split} R_{eq} &= R_1 + R_2 \\ \frac{2L}{k_{eq}} &= \frac{L}{k_1 A} + \frac{L}{k_2 A} \\ \frac{2}{k_{eq}} &= \frac{1}{k_1} + \frac{1}{k_2} \\ k_{eq} &= \frac{2k_1 k_2}{k_1 + k_2} \end{split}$$

Question: In a SHM, the distance from mean position where energy is? **Options:**

(a) A

(b) $\frac{A}{2}$ (c) $\frac{A}{\sqrt{2}}$ (d) $\frac{A}{4}$ Answer: (c) Solution: Equation of S.H.M $x = A \sin \omega t$ $K.E = \frac{1}{2}mA^2\omega^2\cos^2\omega t$ $P.E = \frac{1}{2}KA^2\sin^2\omega t$ From questions. K.E = P.E $\frac{1}{2}mA^2\omega^2\cos^2\omega t = \frac{1}{2}kA^2\sin^2\omega t$ $m\omega^2 \cos^2 \omega t = k \sin^2 \omega t$ $m\omega^2 \cos^2 \omega t = m\omega^2 \sin^2 \omega t \quad \left[k = m\omega^2 \right]$ $\tan^2 \omega t = 1$ $\tan \omega t = 1$ $\omega t = \frac{\pi}{4}$ $x = A\sin\left(\pi \,/\, 4\right)$ $x = \frac{A}{\sqrt{2}}$

Question: If V_n is the speed of an electron in n^{th} orbit of a hydrogen atom then correct proportionality is?

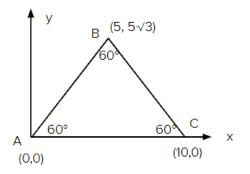
Options:

(a) $V_n \alpha n^2$ (b) $V_n \alpha n$ (c) $V_n \alpha \frac{1}{n}$ (d) $V_n \alpha \frac{1}{n^2}$

Answer: (c)

Solution:

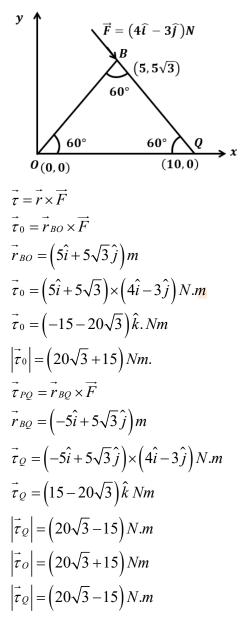
Speed of electron in nth orbit of a hydrogen atom is given by


$$V_n = \frac{2.19 \times 10^6}{n} m / s$$
$$V_n \propto \frac{1}{n}$$

Question: A boy moves a ball of mass 0.5 kg in horizontal rough surface with 20 m/s. It collides and moves with 5% of its initial kinetic energy. Find the final speed?

Options:

(a) $\sqrt{5} m/s$ (b) $4\sqrt{5} m/s$ (c) $2\sqrt{5} m/s$ (d) 2 m/s **Answer:** (c) **Solution:** Given m = 0.5 kg $v_i = 20 m/s$ $K.E_i = \frac{1}{2} mV_i^2$ After collision ball moves by 5% of initial kinetic energy. $K.E_f = 0.05 K.E_i$ $\frac{1}{2} mV_f^2 = 0.05 \times \frac{1}{2} \times mV_i^2$ $V_f = \sqrt{0.05 \times (20)^2}$ $V_f = 2\sqrt{5} m/s$


Question: A force $\vec{F} = (4\hat{i} - 3\hat{j})N$ acts on vertex B. τ_0 = Torque about O. τ_0 = Torque about Q.

Options: (a) $\tau_0 = (20\sqrt{3} + 15) Nm \tau_Q = (20\sqrt{3} - 15) Nm$

(b)
$$\tau_0 = (20\sqrt{3} - 15) Nm \tau_Q = (20\sqrt{3} + 15) Nm$$

(c) $\tau_0 = (20\sqrt{3} - 15) Nm \tau_Q = (20\sqrt{3} - 15) Nm$
(d) $\tau_0 = (20\sqrt{3} + 15) Nm \tau_Q = (20\sqrt{3} + 15) Nm$

Answer: (a) Solution:

JEE-Main-17-03-2021-Shift-1 (Memory Based) CHEMISTRY

Question: IUPAC name of mesityl oxide **Options:**

(a) 4-methyl pent-3-en-2-one

(b) 3-methyl pent-4-en-1-one

(c) 4-methyl pent-5-en-2-one

(d) 2-ethyl hent-2-ene-3-one

Answer: (a)

Solution:

IUPAC name of mesityl oxide is 4-methyl pent-3-en-2-one

Question: S1: Potassium permanganate decompose to give potassium manganate at 500 K.

S2: Both permanganate and manganate are tetrahedral and paramagnetic **Options:**

(a) Both S1 and S2 are correct

(b) S1 is correct, S2 is wrong

(c) S2 is correct, S1 is wrong

(d) Both S1 and S2 are wrong

Answer: (b)

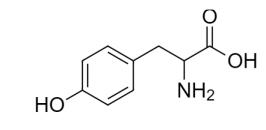
Solution:

S1 is correct:

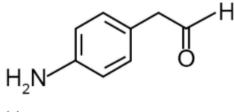
 $2KMnO_4 \xrightarrow{500K} K_2MnO_4 + MnO_2 + O_2$

S2 is wrong because MnO_4^- and MnO_4^{2-} are tetrahedral but MnO_4^{2-} contains one unpaired electron hence it is a paramagnetic while MnO_4^- has no unpaired electron so it is diamagnetic

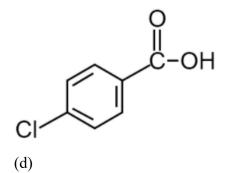
Question: Magnetic moment of Mn²⁺

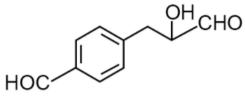

Options:

(a) 2.7 BM (b) 8.5 BM (c) 5.9 BM (d) 9.8 BM **Answer:** (c) **Solution:** Mn²⁺ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s⁰ 3d⁵ n = 5 $\mu = \sqrt{n(n+2)}$ $\sqrt{5(5+2)} = \sqrt{35} = 5.9$ BM


Question: Structure of tyrosine

Options:


(a)



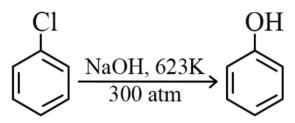
(b)


(c)

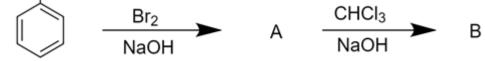
Answer: (a)

Solution:

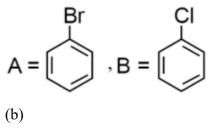
Question: Benzene chloride with NaOH give phenoxide ion. What is the temperature and pressure of this reaction?

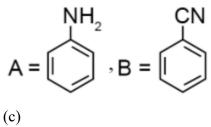

Options:

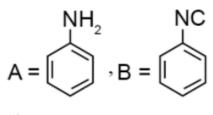
(a) 200 K, 443 atm


- (b) 350 K, 200 atm
- (c) 500 K, 100 atm
- (d) 623 K, 300 atm

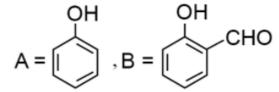
Solution:

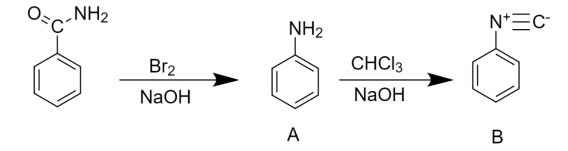



Question: What are A and B? $O_{C} NH_2$



Options:


(a)

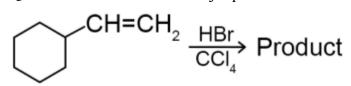


(d)

Answer: (c)

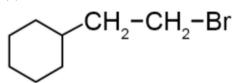
Solution:

Question: The colloid in which gas is the dispersed phase and solid is the dispersion medium: **Options:**

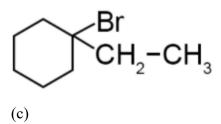

- (a) Gel
- (b) Solid foam
- (c) Aerosol

(d) Foam

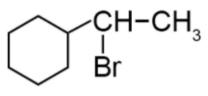
Answer: (b)

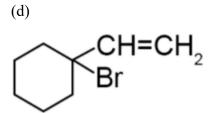

Solution: Solid foam

Question: What will be the major product?

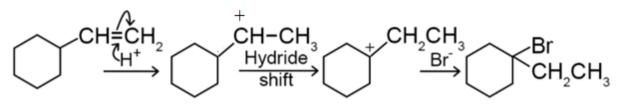


Options:


(a)



(b)



(c)

Answer: (b)

Question: Two non-reacting gases CH₄ of mass 6.4 g and CO₂ of mass 8.8 gm is mixed in a vessel of volume 10 litre at 27°C. The pressure in KPa is?

Options:

(a) 149.96

(b) 148

(c) 14996

(d) 1.48

Answer: (a)

Solution:

Moles of $CH_4 = \frac{6.4}{16} = 0.4 \text{ mol}$ Moles of $CO_2 = \frac{8.8}{44} = 0.2 \text{ mol}$

According to Dalton's law

 $P_{total} = P_1 + P_2 \label{eq:ptotal}$

$$P_{\text{total}} = n_1 \frac{RT}{V} + n_2 \frac{RT}{V} = (n_1 + n_2) \frac{RT}{V}$$
$$= \frac{0.6 \times 0.0821 \times 300}{10} = 1.48 \text{ atm}$$
$$= 149.96 \text{ KPa}$$

Question:

 ΔH_f of $Al_2O_3 = -1290$ KJ/mol, ΔH_f of CaO = -675 KJ/mol $3CaO + 2Al \rightarrow Al_2O_3 + 3Ca$ Calculate ΔH_f for this reaction. **Options:**

- (a) +735 kJ
- (b) -735 kJ

(c) +3315 kJ

(d) -3315 kJ

Answer: (a)

$$2Al + \frac{3}{2}O_2 \rightarrow Al_2O_3 \quad \Delta Hf_1 = -1290 \text{ kJ}$$

$$Ca + \frac{1}{2}O_2 \rightarrow CaO \quad \Delta Hf_2 = -675 \text{ kJ}$$

$$3CaO + 2Al \rightarrow Al_2O_3 + 3Ca \quad \Delta H_3$$

$$\Delta H_3 = \Delta Hf_1 - 3(\Delta Hf_2)$$

$$= -1290 - 3(-675) = +735 \text{ kJ}$$

Question: Composition of reducing smog:

Options:

- (a) SO₂, Smoke, fog
- (b) CH2=CH-CHO, Smoke, fog

(c) N₂O₃, Smoke, fog

(d) O₃, Smoke, fog

Answer: (a)

Solution: Reducing smog is characterised by sulphur dioxide and particulars like, smoke, fog

Question: HA is a weak acid. No. of moles= 0.001, $K_a = 2 \times 10^{-6}$, HCl is added with molarity 0.01 and the solution is made 1 litre. Calculate degree of dissociation of HA **Options:**

(a) 0.02

- (b) 0.2
- (c) 2×10^{-3}
- (d) 2×10^{-4}

Answer: (d)

$$HA \rightleftharpoons H^{+} + A^{-}$$

$$1 \qquad 0 \qquad 0$$

$$C(1-\alpha) \qquad C\alpha \qquad C\alpha$$

$$Ka = \frac{C\alpha^{2}}{1-\alpha} \approx C\alpha^{2}$$

On adding, HCl,
$$[H^+] = 0.01$$

$$2 \times 10^{-6} = \frac{\left[H^{+}\right]\left[A^{-}\right]}{C(1-\alpha)} = 0.01 \times \alpha$$
$$\alpha = \frac{2 \times 10^{-6}}{0.01} = 2 \times 10^{-4}$$

Question: The order of electron gain enthalpy in group 17 element is: **Options:**

- (a) F < Cl < Br < I
- (b) I < Br < F < Cl
- (c) Br < Cl < F < I
- (d) I < Cl < Br < F

Answer: (b)

Solution: Iodine has lowest electron gain enthalpy amongst halogens.

Electron gain enthalpy of F is less negative than, Cl because of its small size. But on going from Cl to I, due to decreased in electronegativity electron gain enthalpy also decreases

Question: Conductivity order of ions in aqueous solution

Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ **Options:**

(a) $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$

(b) $Na^+ > Li^+ > Rb^+ > K^+ > Cs^+$

(c) $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$

(d) $K^+ > Rb^+ > Cs^+ > Na^+ > Li^+$

Answer: (a)

Solution: Cs⁺, being least hydrated shows maximum ionic, mobility and thus highest conductivity

Question: Find mole fraction of solute in aqueous solution with the molality 100 mol/kg. **Options:**

(a) 1.78

(b) 0.24

- (c) 0.643
- (d) 2.57

Answer: (c)

Solution: 100 mol/kg means 100 moles of solute in 1 kg of solvent (water)

Number of moles of solute = 100

Number of moles of solvent =
$$\frac{1000}{18} = 55.5$$

Mole fraction of solute $=\frac{100}{100+55.5}=0.643$

Question: Which energy level of C^{5+} ion will have the same energy as that of ground state of hydrogen atom?

Options:

(a) 3

(b) 4

(c) 5

(d) 6

Answer: (d)

Solution:

$$E = -\frac{13.6Z^2}{n^2}$$
$$\frac{Z_1^2}{n_1^2} = \frac{Z_2^2}{n_2^2}$$
$$\frac{6^2}{n_1^2} = \frac{1^2}{1^2}$$
$$\implies n_1 = 6$$

Question: Which of the following is not a Lewis base?

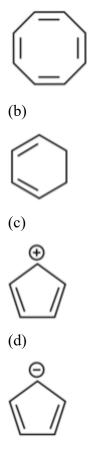
Options:

(a) PCl₅

(b) ClF₃

(c) NF₃

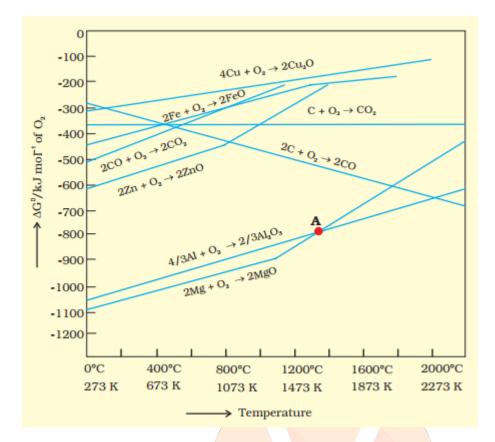
(d) SF4


Answer: (a)

Solution: PCl₅ has empty d-orbital in valence shell. So it can accept a pair of electrons from Lewis base

Hence, it acts as Lewis acid

Question: Which of the following is aromatic? **Options:**


(a)

Answer: (d)

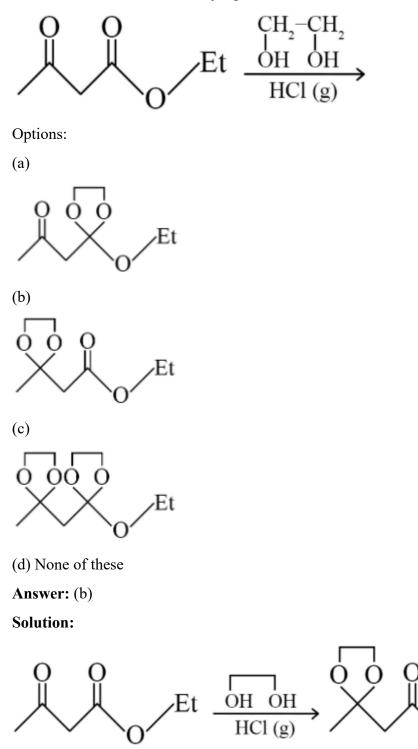
Solution: It has (4n + 2) electrons i.e., 6π electrons and satisfies Huckel's rule of aromaticity

Question: What does the point A signify? What does the abrupt change in slope of the graph signify?

Options:

- (a) Point A signifies equilibrium and abrupt change in slope show phase change
- (b) Point A signifies chemical reaction and abrupt change in slope show end of reaction
- (c) Point A signifies melting and change is slope show vaporisation
- (d) Point A signifies no reaction and change is slope show vaporisation

Answer: (a)


Solution: Point A signifies equilibrium between one metal and the metal oxide of two graphs abrupt change in the slope signifies melting of the metal corresponds to the graph

Question: Identify the shape that contains 3 bond pairs and 2 lone pair	
Options:	

- (a) Regular
- (b) See saw
- (c) T-shaped
- (d) Linear
- Answer: (c)

Solution: T-shaped contains 3 bond pairs and 2 lone pair

Question: What will be the major product

Ester group will not react, only keto group will react

Et

Question: Number of radial nodes if n = 4 and m = -3

Options:

(a) 3

(b) 2

(c) 1

(d) 0

Answer: (d)

Solution: Radial node = n - l - 1 = 0

JEE-Main-17-03-2021-Shift-1 (Memory Based) MATHEMATICS

Question: Inverse of $y = 5^{\log x}$ Options: (a) (b) (c) (d) Answer: () Solution: $y = x^{\log 5}$ $\log y = \log 5 \log x$ $\log x = \log_5 y$ $x = e^{\log_5 y}$ \Rightarrow Inverse is $y = e^{\log_5 x} = x^{\log_5 e}$ Question: Plane consisting of y axis and passing through (1,2,3)

Options: (a) (b) (c) (d) Answer: () Solution: Equation of plane is ax + by + cz = 0

: Plane contains y-axis

 $\therefore b = 0$

 \Rightarrow ax + cz = 0 passes through (1, 2, 3)

$$a + 3c = 0 \Longrightarrow a = -3c$$

 \therefore Equation of plane is 3x - z = 0

Question:
$$4 + \frac{1}{5 + \frac{1}{4 + \frac{1}{5 + \dots \infty}}} = 2$$

Options: (a) (b) (c) (d) Answer: () Solution: $y = 4 + \frac{1}{5 + \frac{1}{y}} \Rightarrow y = 4 + \frac{y}{5y + 1}$ $5y^2 + y = 21y + 4$ $\Rightarrow 5y^2 - 20y - 4 = 0$ $y = \frac{20 \pm \sqrt{400 + 80}}{10} = \frac{20 \pm 4\sqrt{30}}{10} = \frac{10 \pm 2\sqrt{30}}{5}$ $\therefore y > 4 \Rightarrow y = \frac{10 + 2\sqrt{30}}{5} = \frac{10 + \sqrt{120}}{5}$

Question: If
$$A = \begin{pmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{pmatrix}$$
 and $\det \left(A^2 - \frac{1}{2}I \right) = 0$ then a possible value of α is Options:

(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$ (d) Answer: (a) Solution: $A = \begin{bmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{bmatrix}$ $A^2 = \begin{bmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{bmatrix} \begin{bmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{bmatrix} = \begin{bmatrix} \sin^2 \alpha & 0 \\ 0 & \sin^2 \alpha \end{bmatrix}$ $\therefore A^2 - \frac{1}{2}I = \begin{bmatrix} \sin^2 \alpha - \frac{1}{2} & 0 \\ 0 & \sin^2 \alpha - \frac{1}{2} \end{bmatrix}$

$$\therefore \det\left(A^2 - \frac{1}{2}I\right) = 0$$
$$\Rightarrow \sin^2 \alpha = \frac{1}{2}$$
$$\Rightarrow \sin \alpha = \pm \frac{1}{\sqrt{2}} \Rightarrow \alpha = \frac{\pi}{4}$$

Question: Two dice with faces 1, 2, 3, 5, 7, 11 when rolled. Find the probability that the sum of the top faces is less or equal to 8 **Options:**

(a) (b) (c) (d) Answer: () Solution: Total cases = $6 \times 6 = 36$ Favourable cases = 5+4+4+3+1=17

 \therefore Required probability = $\frac{17}{36}$

Question: $\frac{dy}{dx} = xy - 1 + x - y, y(0) = 0$ then find y(1)Options: (a) (b) (c) (d) Answer: () Solution: $\frac{dy}{dx} = (x-1)(y+1)$ $\int \frac{dy}{(y+1)} = \int (x-1)dx$ $\Rightarrow \ln(y+1) = \frac{x^2}{2} - x + c$ $\Rightarrow c = 0$

$$\therefore \ln(y+1) = \frac{x^2}{2} - x$$

At $x = 1 \Rightarrow y = -1 + e^{\frac{-1}{2}}$

Question: $\lim_{x \to 0^{+}} \frac{\left(\cos^{-1}\left(x - [x]^{2}\right)\right)\sin^{-1}\left(x - [x]^{2}\right)}{x - x^{3}}$ Options: (a) (b) (c) (d) Answer: () Solution: $\lim_{x \to 0^{+}} \frac{\cos^{-1}\left(x\right) \cdot \sin^{-1}\left(x\right)}{x - x^{3}} = \lim_{x \to 0^{+}} \frac{\pi}{2} \cdot \frac{\sin^{-1}\left(x\right)}{x}$ $= \lim_{x \to 0^{+}} \left(\frac{\pi}{2}\right) \cdot \frac{1}{\sqrt{1 - x^{2}}} = \frac{\pi}{2}$

Question: if 2x - y + 1 = 0 is tangent to circle at (2,5) and center of circle lie on x - 2y = 4, then radius of circle is.

Options:

(a) (b) (c) (d) Answer: () Solution: Equation of normal passing through (2, 5) is x+2y=12

Let centre be (h,k)

 $\therefore h - 2k = 4$ h + 2k = 12h = 8, k = 2

$$\therefore \text{ Radius } = \sqrt{36+9} = \sqrt{45} = 3\sqrt{5}$$

Question: z, iz, z + iz are vertices of a Δ . Find its area. **Options:**

(a)
$$\frac{1}{2}$$

(b) $\frac{1}{2}|z|^{2}$
(c) 1
(d) $\frac{1}{2}|z+iz|^{2}$

Answer: (b)

Solution:

If z is any complex number, iz will be a number of equal magnitude rotated by 90°

Thus, Δ is right angled Δ with sides z & iz and hypotenuse z + iz

$$\therefore \text{ Area} = \left| \frac{1}{2} \times z \times iz \right| = \frac{|z|^2}{2}$$

Question: $g(\alpha) = \int_{-\infty}^{\frac{\pi}{3}} \frac{\sin^{\alpha} x}{\sin^{\alpha} x + \cos^{\alpha} x} dx$ then which of the following is correct ?

Options:

(c)
$$g(\alpha)$$
 has point of $x = \frac{1}{2}$ as point of confection

(d) $g(\alpha)$ is an even function

Answer: (d)

$$g(\alpha) = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin^{\alpha} x}{\sin^{\alpha} x + \cos^{\alpha} x} dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos^{\alpha} x}{\sin^{\alpha} x + \cos^{\alpha} x} dx$$
$$\therefore 2g(\alpha) = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} dx = \frac{\pi}{6}$$
$$\Rightarrow g(\alpha) = \frac{\pi}{12} \Rightarrow \text{ even function}$$

Question: $x^2 + y^2 - 10x - 10y + 41 = 0$ and $x^2 + y^2 - 16x - 10y + 80 = 0$ are two circles which of the following is NOT correct.

Options:

- (a) Distance between centers is equal to average of radii
- (b) Both circles passes through centres of each other
- (c) Centres of each circle is contained in other circle
- (d) Both circles intersect at 2 points

Answer: (c)

Solution:

$$C_1(5,5); r_1 = 3; C_2(8,5); r_2 = 3$$

$$\Rightarrow C_1 C_2 = \sqrt{9} = 3 = \frac{r_1 + r_2}{2}$$

Also, $|r_1 - r_2| < C_1 C_2 < r_1 + r_2 \implies$ intersect at two points

Also, both circles passes through centres of each other

Question:
$$\cot^{-1}(\alpha) = \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(16) + \cot^{-1}(32) + \dots$$
 upto 100 terms, then
 $\alpha = ?$
Answer: 1.01
Solution:
 $\cot^{-1}(\alpha) = \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \cot^{-1}(32) + \dots$ 100 terms
 $= \sum_{r=1}^{100} \cot^{-1}(2r^{2}) = \sum_{r=1}^{100} \tan^{-1}(\frac{1}{2r^{2}})$
 $= \sum_{r=1}^{100} \tan^{-1}[\frac{(2r+1)-(2r-1)}{1+(2r+1)(2r-1)}]$
 $= \tan^{-1}(3) - \tan^{-1}(1) + \tan^{-1}(5) - \tan^{-1}(3) + \dots \tan^{-1}(201) - \tan^{-1}(1098)$
 $= \tan^{-1}(201) - \tan^{-1}(1)$
 $= \tan^{-1}(\frac{200}{1+201}) = \tan^{-1}(\frac{100}{101}) = \cot^{-1}(\frac{101}{100})$
 $\Rightarrow \alpha = \frac{101}{100} = 1.01$

Question: kx + y + z = 1, x + ky + z = k, $x + y + kz = k^2$ be system of equations with no solution, then k =**Answer:** -2.00 **Solution:**

$$\begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{vmatrix} = 0$$

$$\Rightarrow k (k^{2} - 1) - (k - 1) + (1 - k) = 0$$

$$(k - 1) [k^{2} + k - 2] = 0$$

$$k = 1, -2$$

But at k = 1, equation becomes same, so rejected

$$\therefore k = -2$$

Question: If $f(x) = \frac{(\cos(\sin x) - \cos x)}{x^4}$ is continuous over the domain and $f(0) = \frac{1}{k}, k = ?$ Answer: 6.00 Solution: $\therefore f(x)$ is continuous $\therefore f(0) = \lim f(x)$

$$= \lim_{x \to 0} \frac{2 \sin\left(\frac{x + \sin x}{2}\right) \sin\left(\frac{x - \sin x}{2}\right)}{x^4}$$
$$= \lim_{x \to 0} \frac{2 \left(x^2 - \sin^2 x\right)}{4x^4}$$
$$= \lim_{x \to 0} \frac{1}{2} \left[\frac{2x - \sin 2x}{4x^3}\right]$$
$$= \lim_{x \to 0} \frac{1}{8} \left[\frac{2 - 2\cos 2x}{3x^2}\right] = \frac{1}{6}$$
$$\Rightarrow k = 6$$

Question: $(x + x^{\log_2 x})^7$ has fourth term 4480 then x =Answer: 2.00 Solution: $T_{r+1} = {^7C_r(x)}^{7-r} \cdot (x^{\log_2 x})^r$ $\therefore T_4 = 4480$ $\therefore {^7C_3}x^4 \cdot x^{3\log_2 x} = 4480$

$$\Rightarrow x^{4+3\log_2 x} = 128 = 2^7$$
$$\Rightarrow x = 2$$

Question: $(2021)^{3762}$ is divided by 17, find the remainder.

Answer: 4.00 Solution: $(2021)^{3762} = (2023 - 2)^{3762} = (17k - 2)^{3762}$

Above expression has remainder $(2)^{3762}$

$$\Rightarrow (2)^{3762} = (2)^{3760} \cdot 4 = (16)^{940} \cdot 4 = (17 - 1)^{940} \cdot 4$$

Above expression has remainder $(1)^{940} \cdot 4 = 4$

Question: Team A contains 7 boys and n girls, Team B has 4 boys and 6 girls. If each boy of Team A plays one match with each half of Team B and each girl of Team A plays one match with every girl of Team 'B' and total matches are 52. Find 'n'

Answer: 4.00 Solution:

Team A \Rightarrow 7 boys and n girls

Team B \Rightarrow 4 boys and 6 girls

$$\therefore (7 \times 4) + (n \times 6) = 52$$
$$\Rightarrow 6n = 24$$
$$\Rightarrow n = 4$$

Question: $\tan^{-1}(x+1) + \cot^{-1}\left(\frac{1}{x-1}\right) = \tan^{-1}\frac{8}{31}$, Then sum of all values 'x' satisfy

)

Answer: -8.00 Solution:

$$\cot^{-1}\left(\frac{1}{x-1}\right) = \tan^{-1}\left(\frac{8}{31}\right) - \tan^{-1}\left(x+1\right)$$
$$= \tan^{-1}\left[\frac{\frac{8}{31} - (x+1)}{1 + \frac{8}{31}(x+1)}\right]$$
$$\cot^{-1}\left(\frac{1}{x-1}\right) = \tan^{-1}\left[\frac{-31x-23}{39+8x}\right]$$

$$\Rightarrow (39+8x)(x-1) + (31x+23) = 0$$

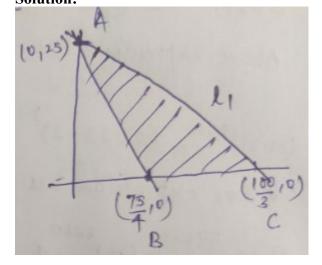
$$\Rightarrow 8x^{2} + 31x - 39 + 31x + 23 = 0$$

$$\Rightarrow 8x^{2} + 62x - 16 = 0$$

$$\Rightarrow 4x^{2} + 31x - 8 = 0$$

$$\Rightarrow 4x^{2} + 32x - x - 8 = 0$$

$$\Rightarrow 4x(x+8) - (x+8) = 0$$


$$\Rightarrow x = \frac{1}{4}, -8$$

But $x \neq \frac{1}{4}$ as not satisfying given equation
So, $x = -8$

Question: $x^2 + y^2 - 10y - 10x + 41 = 0$ and $x^2 + y^2 - 24x - 10y + 160 = 0$ are circles. Then the minimum distance between points lying on them is Answer: 1.00 Solution: $C_1(5,5)$; $r_1 = 3$; $C_2(12,5)$; $r_2 = 3$

$$\therefore C_1 C_2 = 7$$

 \Rightarrow Minimum distance between points = $C_1C_2 - r_1 - r_2 = 1$

Question: Maximize $z = 6xy + y^2$ if $3x + 4y \le 100, x, y > 0$ $4x + 3y \le 75$ Answer: 625.00 Solution:

Maximize $z = 6xy + y^2$

$$3x + 4y \le 100$$

$$x, y > 0$$

$$4x + 3y \le 75$$

$$z(A) = (25)^{2} = 625$$

$$z(B) = z(C) = 0$$

 \therefore Maximum value of z = 625

Question:

 $\overline{a} = \alpha \hat{i} + \beta \hat{j} - 3\hat{k}$ $\overline{b} = -\beta \hat{i} - \alpha \hat{j} + \hat{k}$ $\overline{c} = \hat{i} - 2\hat{j} + \hat{k}$ $\overline{a} \cdot \overline{b} = 1$ and $\overline{b} \cdot \overline{c} = -3$. Find $\frac{1}{3} (\overline{a} \times \overline{c}) \cdot \overline{b}$ **Answer: 2.00** Solution: $\overline{a} = \alpha \hat{i} + \beta \hat{j} - 3\hat{k}$ $\overline{b} = -\beta \hat{i} - \alpha \hat{j} + \hat{k}$ $\overline{c} = \hat{i} - 2\hat{j} + \hat{k}$ $\overline{a} \cdot \overline{b} = 1 \Longrightarrow -2\alpha\beta - 3 = 1 \Longrightarrow \alpha\beta = -2$ $\overline{b} \cdot \overline{c} = -2 \Longrightarrow -\beta + 2\alpha + 1 = -3 \Longrightarrow 2\alpha - \beta = -4$ $\alpha = -1$ $\beta = 2$ $\therefore \overline{a} \times \overline{c} = \begin{vmatrix} i & j & k \\ \alpha & \beta & -3 \\ 1 & -2 & 1 \end{vmatrix} = (\beta - 6)\hat{i} - (\alpha + 3)\hat{j} - (2\alpha + \beta)\hat{k}$ $\therefore \frac{1}{3} (\overline{a} \times \overline{c}) \cdot \overline{b} = \frac{1}{3} \Big[6\beta - \beta^2 + \alpha^2 + 3\alpha - 2\alpha - \beta \Big]$ $=\frac{1}{3}\left[\left(\alpha^{2}+\alpha\right)-\left(\beta^{2}-5\alpha\right)\right]=\frac{1}{3}\left[0-\left(-6\right)\right]=2$